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ABSTRACT

We develop an algorithm to train individually fair learning-to-rank (LTR) models.
The proposed approach ensures items from minority groups appear alongside
similar items from majority groups. This notion of fair ranking is based on the
de�nition of individual fairness from supervised learning and is more nuanced
than prior fair LTR approaches that simply ensure the ranking model provides
underrepresented items with a basic level of exposure. The crux of our method
is an optimal transport-based regularizer that enforces individual fairness and an
ef�cient algorithm for optimizing the regularizer. We show that our approach leads
to certi�ably individually fair LTR models and demonstrate the ef�cacy of our
method on ranking tasks subject to demographic biases.

1 INTRODUCTION

Information retrieval (IR) systems are everywhere in today's digital world, and ranking models are
integral parts of many IR systems. In light of their ubiquity, issues of algorithmic bias and unfairness
in ranking models have come to the fore of the public's attention. In many applications, the items
to be ranked are individuals, so algorithmic biases in the output of ranking models directly affect
people's lives. For example, gender bias in job search engines directly affect the career success of job
applicants (Dastin, 2018).

There is a rapidly growing literature on detecting and mitigating algorithmic bias in machine learning
(ML). The ML community has developed many formal de�nitions of algorithmic fairness along with
algorithms to enforce these de�nitions (Dwork et al., 2012; Hardt et al., 2016; Berk et al., 2018; Kusner
et al., 2018; Ritov et al., 2017; Yurochkin et al., 2020). Unfortunately, these issues have received less
attention in the IR community. In particular, compared to the myriad of mathematical de�nitions of
algorithmic fairness in the ML community, there are only a few de�nitions of algorithmic fairness for
ranking. A recent review of fair ranking (Castillo, 2019) identi�es two characteristics of fair rankings:

1. suf�cient exposure of items from disadvantaged groups in rankings: Rankings should display a
diversity of items. In particular, rankings should take care to display items from disadvantaged
groups to avoid allocative harms to items from such groups.

2. consistent treatment of similar items in rankings: Items with similar relevant attributes should be
ranked similarly.

There is a line of work on fair ranking bySingh & Joachims(2018; 2019) that focuses on the �rst
characteristic. In this paper, we complement this line of work by focusing on the second characteristic.
In particular, we (i) specialize the notion of individual fairness in ML to rankings and (ii) devise
an ef�cient algorithm for enforcing this notion in practice. We focus on the second characteristic
since, in some sense, consistent treatment of similar items implies adequate exposure: if there are
items from disadvantaged groups that are similar to relevant items from advantaged groups, then a
ranking model that treats similar items consistently will provide adequate exposure to the items from
disadvantaged groups.
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1.1 RELATED WORK

Our work addresses the fairness of a learning-to-rank (LTR) system with respect to the items being
ranked. The majority of work in this area requires a fair ranking to fairly allocate exposure (measured
by the rank of an item in a ranking) to items. One line of work (Yang & Stoyanovich, 2017; Zehlike
et al., 2017; Celis et al., 2018; Geyik et al., 2019; Celis et al., 2020; Yang et al., 2019b) requires a
fair ranking to place a minimum number of minority group items in the topk ranks. Another line
of work models the exposure items receive based on rank position and allocates exposure based on
these exposure models and item relevance (Singh & Joachims, 2018; Zehlike & Castillo, 2020; Biega
et al., 2018; Singh & Joachims, 2019; Sapiezynski et al., 2019). There is some work that consider
other fairness notions. The work ofKuhlman et al.(2019) proposes error-based fairness criteria, and
the framework ofAsudeh et al.(2019) can handle arbitrary fairness constraints given by an oracle.
In contrast, we propose a fundamentally new de�nition: an individually fair ranking is invariant
to sensitive perturbations of the features of the items. For example, consider ranking a set of job
candidates, and consider the hypothetical set of candidates obtained from the original set by �ipping
each candidate's gender. We require that a fair LTR model produces the same ranking for both the
original and hypothetical set.

The work inZehlike et al.(2017); Celis et al.(2018); Singh & Joachims(2018); Biega et al.(2018);
Geyik et al.(2019); Celis et al.(2020); Yang et al.(2019b); Wu et al.(2018); Asudeh et al.(2019)
propose post-processing algorithms to obtain a fair ranking, i.e., algorithms that fairly re-rank items
based on estimated relevance scores or rankings from potentially biased LTR models. However,
post-processing techniques are insuf�cient since they can be mislead by biased estimated relevance
scores (Zehlike & Castillo, 2020; Singh & Joachims, 2019) with the exception of the work inCelis
et al.(2020) which assumes a speci�c bias model and provably counteracts this bias. In contrast, like
Zehlike & Castillo(2020); Singh & Joachims(2019), we propose an in-processing algorithm. We
also note that there is some work on

We consider individual fairness as opposed to group fairness (Yang & Stoyanovich, 2017; Zehlike
et al., 2017; Celis et al., 2018; Singh & Joachims, 2018; Zehlike & Castillo, 2020; Geyik et al., 2019;
Sapiezynski et al., 2019; Kuhlman et al., 2019; Celis et al., 2020; Yang et al., 2019b; Wu et al., 2018;
Asudeh et al., 2019). The merits of individual fairness over group fairness have been well established,
e.g., group fair models can be blatantly unfair to individuals (Dwork et al., 2012). In fact, we show
empirically that individual fairness is adequate for group fairness but not vice versa. The work in
Biega et al.(2018); Singh & Joachims(2019) also considers individually fair LTR models. However,
our notion of individual fairness is fundamentally different since we utilize a fair metric on queries
like in the seminal work that introduced individual fairness (Dwork et al., 2012) instead of measuring
the similarity of items through relevance alone. To see the bene�t of our approach, consider the job
applicant example. If the training data does not contain highly ranked minority candidates, then at
test time our LTR model will be able to correctly rank a minority candidate who should be highly
ranked, which is not necessarily true for the work inBiega et al.(2018); Singh & Joachims(2019).

2 PROBLEM FORMULATION

A query q 2 Q to a ranker consists of a candidate set ofn items that needs to be rankeddq ,
f dq

1; : : : ; dq
n g and a set of relevance scoresrelq , f relq(d) 2 Rgd2 dq . Each item is represented

by a feature vector' (d) 2 X that describes the match between itemd and queryq whereX is
the feature space of the item representations. We consider stochastic ranking policies� (� j q) that
are distributions over rankingsr (i.e.permutations) of the candidate set. Our notation for rankings
is r (d): the rank of itemd in rankingr (andr � 1(j ) is the j -ranked item). A policy generally
consists of two components: a scoring model and a sampling method. The scoring model is a
smooth ML modelh� parameterized by� (e.g.a neural network) that outputs a vector of scores:
h� (' (dq)) , (h� (' (dq

1)) ; : : : ; h� (' (dq
n ))) . The sampling method de�nes a distribution on rankings

of the candidate set from the scores. For example, the Plackett-Luce (Plackett, 1975) model de�nes
the probability of the rankingr = hd1; : : : ; dn i as

� � (r j q) =
nY

j =1

exp(h� (' (dj )))
exp(h� (' (dj ))) + � � � + exp(h� (' (dn )))

: (2.1)
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To sample a ranking from the Placket-Luce model, items from a query are chosen without replacement
where the probability of selecting items is given by the softmax of the scores of remaining items. The
order in which the items are sampled de�nes the order of the ranking from best to worst. The goal of
the LTR problem is �nding a policy that has maximum expected utility:

� � , arg max� Eq� Q
�
U(� j q)

�
where U(� j q) , Er � � ( �j q)

�
�( r; relq)

�
; (2.2)

whereQ is the distribution of queries,U(� j q) is the utility of a policy� for queryq, and� is a
ranking metric (e.g.normalized discounted cumulative gain). In practice, we solve the empirical
version of (2.2):

b� , arg max�
1
N

NX

i =1

�
U(� j qi )

�
; (2.3)

wheref qi gN
i =1 is a training set. If the policy is parameterized by� , it is not hard to evaluate the

gradient of the utility with respect to� with the log-derivative trick:

@� U(� � j q) = @� Er � � � ( �j q)
�
�( r; relq)

�
=

Z
�( r; relq)@� � � (r j q)dr

=
Z

�( r; relq)@� f log � � (r j q)g� � (r j q)dr = Er � � � ( �j q)
�
�( r; relq)@� log � � (r j q)

�
:

In practice, we (approximately) evaluate@� U(� � j q) by sampling from� � (� j q). This set-up is
mostly adopted fromYadav et al.(2019).

2.1 FAIR RANKING VIA INVARIANCE REGULARIZATION

We cast the fair ranking problem as training ranking policies that are invariant under certain sensitive
perturbations to the queries. LetdQ be a fair metric on queries that encode which queries should be
treated similarly by the LTR model. For example, a LTR model should similarly rank a set of job
candidates and the hypothetical set of job candidates obtained from the original set via �ipping the
gender of each candidate. Hence, these two queries should be close according todQ : We propose
Sensitive Set Transport Invariant Ranking (SenSTIR) to enforce individual fairness in ranking via the
following optimization problem:

� � , arg max� Eq� Q
�
U(� j q)

�
� �R (� ); (SenSTIR)

such that� > 0 is a regularization parameter and

R(� ) ,

8
><

>:

sup� 2 �( Q�Q ) E(q;q0) � �
�
dR (� (� j q); � (� j q0))

�

subject to E(q;q0) � �
�
dQ (q; q0)

�
� �

�( �; Q) = Q

9
>=

>;
(2.4)

is an invariance regularizer wheredR is a metric on ranking policies,�( Q�Q ) is the set of probability
distributions onQ � Q whereQ is the set of queries, and� > 0. At a high-level, individual fairness
requires ML models to have similar outputs for similar inputs. This property is exactly what the
regularizer encourages: the LTR model is encouraged to assign similar ranking policies (with respect
to dR ) to similar queries (with respect todQ ). The problem of enforcing invariance for individual
fairness has been considered in classi�cation (Yurochkin et al., 2020; Yurochkin & Sun, 2021).
However, these methods are not readily applicable to the LTR setting because of two main challenges:
(i) de�ning a fair distancedQ on queries, i.e.,setsof items, and (ii) ensuring the resulting optimization
problem is differentiable.

Optimal transport distance dQ between queries We appeal to the machinery of optimal transport
to de�ne an appropriate metricdQ on queries, i.e.,setsof items. First, we need a fair metric on
itemsdX that encodes our intuition of which items should be treated similarly. Such a metric also
appears in the traditional individual fairness de�nition (Dwork et al., 2012) for classi�cation and
regression problems. Learning an individually fair metric is an important problem of its own that
is actively studied in the recent literature (Ilvento, 2020; Wang et al., 2019; Yurochkin et al., 2020;
Mukherjee et al., 2020). In the experiment section, the fair metric on itemsdX is learned from data
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using existing methods. The key idea is to view queries, i.e.,setsof items, as distributions onX so
that a metric between distributions can be used. In particular, to de�nedQ from dX , we utilize an
optimal transport distance between queries withdX as the transport cost:

dQ (q; q0) ,

8
>><

>>:

inf � 2 �( X �X )
R

X �X dX (x; x 0)d�( x; x 0)

subject to �( �; X ) = 1
n

P n
j =1 � ' (dq

j )

�( X ; �) = 1
n

P n
j =1 �

' (dq0
j )

; (2.5)

where�( X � X ) is the set of probability distributions onX � X whereX is the feature space of
item representations and� is the Dirac delta function.

3 ALGORITHM

In order to apply stochastic optimization to Equation (SenSTIR), we appeal to duality. In particular,
we use Theorem 2.3 ofYurochkin & Sun(2021) re-written with the notation of this work:
Theorem (Theorem 2.3 ofYurochkin & Sun(2021)). If dR (� (� j q); � (� j q0)) � �d Q (q; q0) is
continuous in(q; q0) for all � , then the invariance regularizerR can be written as

R(� ) = inf � � 0f �� + Eq� Q [r � (�; q )]g; where (3.1)

r � (�; q ) , supq02Q f dR (� (� j q); � (� j q0)) � �d Q (q; q0)g: (3.2)

In order to computer � (�; q ), we can use gradient ascent onu(q0 j �; q; � ) , dR (� (� j q); � (� j
q0)) � �d Q (q; q0). We start by computing the gradient ofdQ (q; q0) with respect tox0 , ' (dq0

). Let
x , ' (dq). Let � ?(q; q0) be the optimal transport plan for the problem de�ningdQ (q; q0), that is

dQ (q; q0) =
Z

X �X
dX (x; x 0)d� ?(x; x 0); � ?(�; X ) =

1
n

nX

j =1

� ' (dq
j ) ; � ?(X ; �) =

1
n

nX

j =1

�
' (dq0

j )
:

The probability distribution� ?(q; q0) can be viewed as a coupling matrix where� ?
i;j ,

� ?(' (dq
i ); ' (dq0

j )) . Using this notation we have

@x 0
j
dQ (q; q0) =

nX

i =1

� ?
i;j @2dX (' (dq

i ); ' (dq0

j )) ; (3.3)

where@2dX denotes the derivative ofdX with respect to its second input. IfdR (� � (� j q); � � (� j
q0)) = kh� (' (dq)) � h� (' (dq0

))k2
2=2, then by(3.3), a single iteration of gradient ascent ondQ with

step size for x0 is

x0( l +1)
j = x0( l )

j + 

 

@x 0
j
h� (x0( l ) )T (h� (x0( l ) ) � h� (x)) � �

nX

i =1

� ?
i;j @2dX (x i ; x0( l )

j )

!

: (3.4)

In our experiments, we use this choice ofdR , which has been widely used, e.g., robustness in
image classi�cation (Kannan et al., 2018; Yang et al., 2019a) and fairness (Yurochkin & Sun, 2021).
However, our theory and set-up do not preclude other metrics. We can now present Algorithm1, an
alternating, stochastic algorithm, to solve (SenSTIR).

Algorithm 1: SenSTIR: Sensitive Set Transport Invariant Ranking

Input: Initial Parameters:� 0; � 0; �; � ; Step Sizes:; � t ; � t > 0, Training queries:̂Q
1 repeat
2 Sample mini-batch(qt i ; relqt i )B

i =1 from Q̂
3 q0

t i
 arg maxq0f 1

2 kh� t (' (dqt i )) � h� t (' (dq0
))k2

2 � � t dQ (qt i ; q0)g, i 2 [B ] / * Using
( 3.4 ) * /

4 � t +1  maxf 0; � t + � t � (� � 1
B

P B
i =1 dQ (qt i ; q0

t i
))g

5 � t +1  � t + � t ( 1
B

P B
i =1 @� f U(� � t j qt i )g� � (@� h� t (q

0
t i

)� @� h� t (qt i ))
T (h� t (q

0
t i

)� h� t (qt i ))

6 until convergence
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4 THEORETICAL RESULTS

In this section, we study the generalization performance of the invariance regularizerR(h� ) := R(� � ),
which is an instance of a hierarchical optimal transport problem that does not have known uniform
convergence results in the literature. Furthermore, the regularizer is not a separable function of the
training examples so classical proof techniques are not applicable. To state the result, suppose thatd̂X
is an approximation of the fair metricdX between items that is learned from data. The corresponding
learned metric on queries is de�ned by

d̂Q (q; q0) ,

8
>><

>>:

inf � 2 �( X �X )
R

X �X d̂X (x; x 0)d�( x; x 0)

subject to �( �; X ) = 1
n

P n
j =1 � ' (dq

j )

�( X ; �) = 1
n

P n
j =1 �

' (dq0
j )

; (4.1)

and the empirical regularizer is de�ned by

R̂(h� ) ,

8
>><

>>:

sup� 2 �( Q�Q ) E�
�
dY (h� (' (dq)) ; h� (' (dq0

))
�

subject to E�
�
d̂Q (q; q0)

�
� �

�( �; Q) = Q̂

; (4.2)

whereQ̂ is the distribution of training queries anddY is a metric onY , f h� (' (dq)) j q 2 Qg.

De�ne a class of loss functionsD by D , f dh � : Q � Q ! R + j h� 2 Hg ; wheredh (q; q0) ,
dY (h(' (dq)) ; h(' (dq0

))) andH is the hypothesis class of scoring functions.

Let N (D; d; � ) be the� -covering of the classD with respect to a metricd. The entropy integral ofD
(w.r.t. the uniform metric) measures the complexity of the class and is de�ned by

J (D) ,
Z 1

0

p
logN (D; k � k1 ; � )d�: (4.3)

Assumption A1. Bounded diameters:supx;x 02X dX (x; x 0) � DX ; supy;y 02Y dY (y; y0) � DY :

Assumption A2. Estimation error ofdX is bounded:supx;x 02X jd̂X (x; x 0) � dX (x; x 0)j � � d:

Theorem 4.1. If assumptions A1 and A2 hold andJ (D) is �nite, then with probability at least1 � t

sup
h � 2H

jR̂(h� ) � R(h� )j �
48(J (D) + � � 1DX DY )

p
n

+ DY

�
log 2

t

2n

� 1
2

+
DY � d

�
;

wheren is the number of training queries. A proof of the theorem is given in the appendix. The
key technical challenge is leveraging the transport geometry on the query space to obtain a uniform
bound on the convergence rate. This theorem implies that for a trained ranking modelĥ� , the error
termjR̂(ĥ� ) � R(ĥ� )j is small for largen. Therefore, one can certify that the value of the regularizer
R(ĥ� ) is small on yet unseen (test) data by ensuring that the value ofR̂(ĥ� ) is small on training data.

5 COMPUTATIONAL RESULTS

In this section, we demonstrate the ef�cacy of SenSTIR for learning individually fair LTR models.
One key conclusion is that enforcing individual fairness is adequate to achieve group fairness but not
vice versa. See Section B of the appendix for full details about the experiments.

Fair metric Following Yurochkin et al.(2020), the individually fair metricdX on X is de�ned in
terms of asensitive subspaceA that is learned from data. In particular,dX is the Euclidean distance
of the data projected onto the orthogonal complement ofA. This metric encodes variation due
to sensitive information about individuals in the subspace and ignores it when computing the fair
distance. For example,A can be formed by �tting linear classi�ers to predict sensitive information,
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A PROOFS OFTHEORETICAL RESULTS

Theorem A.1(Theorem4.1). If assumptions A1 and A2 hold andJ (D) is �nite, then with probability
at least1 � t

sup
h2H

jR̂(h) � R(h)j �
48(J (D) + " � 1DX DY )

p
n

+ DY

�
log 2

t

2n

� 1
2

+
DY � d

"
:

Proof. For queriesq; q0 let

�( q; q0) = f � 2 �( X � X ) : �( X ; �) =
1
n

nX

j =1

� ' (dq
j ) ; �( �; X ) =

1
n

nX

j =1

�
' (dq0

j )
g:

Let � � 2 arg min� 2 �( q;q0) E� [dX (X; X 0)] and observe that by assumption A2 and the de�nition of

dQ andd̂Q we have

d̂Q (q; q0) � dQ (q; q0) = inf
� 2 �( q;q0)

E� [d̂X (X; X 0)] � inf
� 2 �( q;q0)

E� [dX (X; X 0)]

= inf
� 2 �( q;q0)

E� [d̂X (X; X 0)] � E� � [dX (X; X 0)]

� E� � [d̂X (X; X 0)] � E� � [dX (X; X 0)]

= E� � [d̂X (X; X 0) � dX (X; X 0)]
� � d:

Similarly,

dQ (q; q0) � d̂Q (q; q0) � E�̂ � [dX (X; X 0) � d̂X (X; X 0)] � � d:

It follows that

jd̂Q (q; q0) � dQ (q; q0)j � � d: (A.1)

Next, we will bound the differencejR̂(h) � R(h)j. To lighten the notation, we writeh; h0 for
h = h(� (dq)) ; h0 = h(� (dq0

)) . From the dual representation ofR(h) andR̂(h) we have

R̂(h) � R(h) = inf
� � 0

f �� + Eq� Q̂ [r̂ � (h; q)]g � inf
� � 0

f �� + Eq� Q [r � (h; q)]g (A.2)

= inf
� � 0

f �� + Eq� Q̂ [r̂ � (h; q)]g � � � � � Eq� Q̂ [r̂ � � (h; q)] (A.3)

� Eq� Q̂ [r̂ � � (h; q)] � Eq� Q [r � � (h; q)] (A.4)

= Eq� Q̂ [r � � (h; q)] � Eq� Q [r � � (h; q)] + Eq� Q̂ [r̂ � � (h; q) � r � � (h; q)]: (A.5)

To bound the last term, note that

jr̂ � � (h; q) � r � � (h; q)j = sup
q0

f d̂Y (h; h0) � � � dQ (q; q0)g � sup
q0

f d̂Y (h; h0) � � � dQ (q; q0)g (A.6)

� � � sup
q0

fj dQ (q; q0) � d̂Q (q; q0)j (A.7)

� � � � d: (A.8)

Combining (A.8) and (A.5) yields

R̂(h) � R(h) � Eq� Q̂ [r � � (h; q)] � Eq� Q [r � � (h; q)] + � � � d: (A.9)

Using a similar argument,

R(h) � R̂(h) � Eq� Q [r �̂ � (h; q)] � Eq� Q̂ [r �̂ � (h; q)] + �̂ � � d: (A.10)
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To �nd an upper bound on� � , observe thatr � (h; q) � 0 for all h 2 H ; � � 0, as

r � (h; q) = sup
q02X

f dY (h; h0) � �d Q (q; q0)g

� dY (h; h) � �d Q (q; q) = 0 :

Thus

� � " � � ?" + Eq�Q [r � (h; q)] = R(h) � DY :

Rearranging the above yields� � � D Y
" and the same upper bound is also valid for�̂ ? by the same

argument.

Combining inequalities (A.9,A.10) and the bound on� � ; �̂ � , we can write

jR̂(h) � R(h)j � sup
f 2F

�
�
�Eq� Q̂ f (q) � Eq� Q f (q)

�
�
� +

DY � d

"
;

whereF = f r � (h; �) : � 2 [0; L ]; h 2 Hg . A standard concentration argument proves

sup
f 2F

�
�
�Eq� Q̂ f (q) � Eq� Q f (q)

�
�
� �

48(J (D) + " � 1DX DYp
n

+ DY (
log 2

t

2n
)

1
2

with probability at least1 � t. This completes the proof of the theorem.

The main technical novelty in this proof is the bound on� � in terms of the diameter of the output
space. This restricts the set of possiblec-transformed loss function class, thereby allowing us to
appeal to standard techniques from empirical process theory to obtain uniform convergence results.
Prior work in this area (e.g.Lee & Raginsky(2018)) relies on smoothness properties of the loss
instead of the geometric properties of the output space, but this precludes non-smooth output metrics.

B EXPERIMENTS

All experiments were ran a cluster of CPUS. We do not require a GPU.

B.1 DATA SETS AND PRE-PROCESSING

Synthetic Synthetic data is generated as described in the main text such that there are 100 queries
in the training set and 100 queries in the test set.

German Credit The German Credit data set (Dua & Graff, 2017) consists of 1000 individuals with
binary labels indicating if they are credit worthy or not. We use the version of the German Credit
data set thatSingh & Joachims(2019) used found athttps://www.kaggle.com/uciml/
german-credit . In particular, this version of the Geramn Credit data set only uses the follow-
ing features:age (integer),sex (binary, does not include any marital status information unlike
the original data set),job (categorical),housing (categorical),savings account (categor-
ical), checking account (integer),credit amount (integer),duration (integer), and
purpose (categorical). SeeDua & Graff (2017) for an explanation of each feature.

Categorical features are the only features with missing data, so we treat missing data as its own
category. The following features are standardized by subtracting the mean and dividing by the
standard deviation (before this data is turned into LTR data):age , duration , andcredit
amount . The remaining binary and categorical features are one hot encoded.

We use an 80/20 train/test split of the original 1000 data points, and then sample from the train-
ing/testing set with replacement to build the LTR data as discussed in the main text. For our
experiments, we use 10 random train/test splits.
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Microsoft Learning to Rank The Microsoft Learning to Rank data set (Qin & Liu, 2013) consists
of query-web page pairs each of which has 136 features and integral relevance scores in[0; 4]. We
use Fold 1's train/validation/test split. FollowingYadav et al.(2019), we use the data in Fold 1
and adopt the given train/validation/test split. The data and feature descriptions can be found at
https://www.microsoft.com/en-us/research/project/mslr/ . We remove the
QualityScore feature (feature 132) since we use theQualityScore2 (feature 133) feature to
learn the fair metric, and it appears based on the description of these features, they are very similar.
We standardize the remaining features (except for the features corresponding toBoolean model ,
i.e. features 96-100, which are binary) by subtracting the mean and dividing by the standard deviation.
Following Yadav et al.(2019), we remove any queries with less than 20 web pages. Furthermore,
we only consider queries that have at least one web page with a relevance of 4. For each query,
we sample 20 web pages without replacement until at least one of the 20 sampled web pages has a
relevance of 4. After pre-processing, there are 33,060 train queries, 11,600 validation queries, and
11,200 test queries.

B.2 COMPARISONMETRICS

Let r be a ranking (i.e. permutation) of a set ofn items that are enumerated such thatr (i ) 2 [n] is
the position of thei -th item in the ranking andr � 1(i ) 2 [n] is the item that is rankedi -th. Let relq(i )
be the relevance of itemi given a queryq.

Normalized Discounted Cumulative Gain (NDCG) Let Sn be the set of all rankings onn items.
The discounted cumulative gain (DCG) of a rankingr is

DCG(r ) =
nX

i =1

2rel q ( r � 1 ( i )) � 1
log2(i + 1)

:

The NDCG of a rankingr is
DCG(r )

maxr 02 Sn DCG(r 0)
:

Because we learn a distribution over rankings and the number of rankings is too large, we cannot
compute the expected value of the NDCG for a given query. Thus, for each query in the test set, we
sampleN rankings (whereN = 10 for synthetic data,N = 25 for German credit data, andN = 32
for Microsoft Learning to Rank data) from the Placket-Luce distribution, compute the NDCG for
each of these rankings, and then take an average. We refer to this quantity as thestochastic NDCG.

Kendall's tau correlation Let r andr 0 be two rankings onn items. Then

KT(r; r 0) :=
1

� n
2

�
X

f i<j :i;j 2 [n ]g

sign(r (i ) � r (j ))sign(r 0(i ) � r 0(j ))

is the Kendall's tau correlation between two rankings.

(Disparity of) Group exposure This de�nition was �rst proposed bySingh & Joachims(2019).
Assume each item belongs to one of two groups. LetG1 (respectivelyG0) be the set of items for a
queryq that belongs to group 1 (respectively group 0). Fori 2 f 0; 1g, letM G i = 1

jG i j

P
d2 G i

relq(d),
which is referred to as the merit of groupi for queryq. For a rankingr and for i 2 f 0; 1g, let
vr (Gi ) = 1

jG i j

P
d2 G i

1
log 2 ( r (d)+1) . Because we learn a distribution over rankings and the number of

rankings is too large, we cannot compute the expected value ofvr (Gi ) over this distribution. Instead,
we sampleN rankings (where againN = 10 for synthetic data,N = 25 for German credit data, and
N = 32 for Microsoft Learning to Rank data) from the Placket-Luce model. LetRq be the set of
theseN sampled rankings for queryq. Then the stochastic disparity of group exposure for queryq is

8
>>>><

>>>>:

max
�

0;
1
N

P
r 2 R q

v r (G0 )

M G 0
�

1
N

P
r 2 R q

v r (G1 )

M G 1

�
if M G0 � M G1 > 0

max
�

0;
1
N

P
r 2 R q

v r (G1 )

M G 1
�

1
N

P
r 2 R q

v r (G0 )

M G 0

�
if 0 < M G0 < M G1

0 if M G0 = 0 or M G1 = 0 :
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In the language ofSingh & Joachims(2019), we use the identity function for merit, and set the
position bias at positionj to be 1

log 2 (1+ j ) just as they did.

B.3 SENSTIR IMPLEMENTATION DETAILS

We implement SenSTIR in TensorFlow and use the PythonPOTpackage to compute the fair distance
between queries and to compute Equation(3.4), which requires solving optimal transport problems.
Throughout this section, variable names from our code are italicized, and the abbreviation we use to
refer to these variables/hyperparameters are followed in parenthesis.

Fair regularizer optimization Recall that in all of the experiments, the fair metricdX on items is
the Euclidean distance of the data projected onto the orthogonal complement of a subspace. In order
to optimize for the fair regularizer in Equation(SenSTIR), �rst we optimize over this subspace, and
we refer to this step as thesubspace attack. Note, the distance between the original queries and the
resulting adversarial queries in the subspace is 0. Second, we use the resulting adversarial queries in
the subspace as an initialization to thefull attack, i.e. we �nd adversarial queries that have a non-zero
fair distance to the original queries. We implement both using the Adam optimizer (Kingma & Ba,
2015).

Learning rates As mentioned above, we use the Adam optimizer to optimize the fair regularizer.
For the subspace attack, we set the learning rate toadv_step(as) and train foradv_epoch(ae) epochs,
and for the full attack, we set the learning rate tol2_attack(fs ) and train foradv_epoch_full(fe )
epochs. We also use the Adam optimizer with a learning rate of .001 to learn the parameters of the
score functionh� .

Fair start Our code allows training the baseline (i.e. when� = 0 ) for a percentage–given by
fair_start(f rs )–of the total number of epochs before the optimization includes the fair regularizer.

Using baseline for variance reduction Following Singh & Joachims(2019), in the gradient
estimate of the empirical version ofEq� Q

�
U(� j q)

�
in Equation(SenSTIR), we subtract off a

baseline termb(q) for each queryq, whereb(q) is the average utilityU(� j q) over the Monte Carlo
samples for the queryq. This counteracts the high variance in the gradient estimate (Williams, 1992).

Other hyperparameters In Tables1 and2, E stands for the total number of epochs used to update
the score functionh� , B stands for the batch size,l2 stands for thè2 regularization strength of the
weights, andMC stands for the number of Monte Carlo samples used to estimate the gradient of the
empirical version ofEq� Q

�
U(� j q)

�
in Equation (SenSTIR) for each query.

B.4 HYPERPARAMETERS

For the synthetic data, we use one train/test split. For the German experiments, we use 10 random
train/test splits all of which use the same hyperparameters. For the Microsoft experiments, we pick
hyperparameters on the validation set (where the range of hyperparameters considered are reported
below) based on the trade-off of stochastic NDCG and individual (respectively group) fairness for
SenSTIR (respectively Fair-PG-Rank), and report the comparison metrics on the test set.

Fair metric For the synthetic data experiments, we usesklearn 's logistic regression solver to
classify majority and minority individuals with1=100`2 regularization strength. For German and
Microsoft, we usesklearn 's RidgeCV solver with the default hyperparameters to predict age
and quality web page score, respectively. For the German experiments, when predicting age, each
individual is represented in the training data exactly once, regardless of the number of queries that an
individual appears in.

SenSTIR For every experiment, all weights are initialized by picking numbers in[� :0001; :0001]
uniformly at random, � in Algorithm 1 is always initialized with 2, and the learn-
ing rate for Adam for the score functionh� is always .001. For synthetic data, the
fair regularization strength� varied in f :0003; :001g. For German, � is varied in
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f :001; :01; 0:02; 0:03; 0:04; 0:05; 0:06; 0:06; 0:07; 0:08; 0:09; :1; 0:11; 0:12; 0:13; 0:14; 0:15; 0:16;
0:17; 0:18; 0:19; 0:28; 0:37; 0:46; 0:55; 0:64; 0:73; 0:82; 0:91; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 50; 100g. For
Microsoft, � is varied inf :00001; :0001; :001; :01; :04; :07; :1; :33; :66; 1:g. We report results for all
choices of� .

See Table1 for the remaining values of hyperparameters where the column names have been de�ned
in the previous section except for� , which refers to� in the de�nition of the fair regularizer. For
Microsoft, the best performing hyperparameters on the validation set are reported where the`2
regularization parameter for the weights are varied inf :001; :0001; 0g, as is varied inf :01; :001g, ae
andfe are varied inf 20; 40g, and� is varied inf 1; :1; :01g.

Table 1: SenSTIR hyperparameter choices

E B as ae � fs fe f rs l 2 MC

Synthetic 2K 1 0.001 20 0.001 0.001 20 0 0 10
German 20K 10 .01 20 1 0.001 20 .1 0 25
Microsoft 68K 10 .01 40 .01 0.001 40 .1 0.001 32

Baseline and Project For the baseline (i.e.� = 0 with no fair regularization) and project baseline,
we use the same number of epochs, batch sizes, Monte Carlo samples, and`2 regularization as in
Table1 for SenSTIR. Furthermore, we use the same weight initialization and learning rate for Adam
as in the SenSTIR experiments.

Fair-PG-Rank We use the implementation found athttps://github.com/ashudeep/
Fair-PGRank for the synthetic and German experiments, whereas we use our own implementa-
tion for the Microsoft experiments because we could not get their code to run on this data. They
use Adam for optimization, and the learning rate is .1 for the synthetic data and .001 for Ger-
man and Microsoft. Let� refer to the Fair-PG-Rank fair regularization strength. For synthetic,
� = 25. For German,� is varied inf :1; 1; 1:5; 2; 2:5; 3; 3:5; 4g. For Microsoft, � is varied in
f :001; :01; :1; :5; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 50; 100; 500; 150; 200; 250; 300; 350; 400; 450; 500; 550;
600; 650; 700; 750; 800; 850; 900; 950; 1000g. We report results for all choices of� . See Table2
which summarizes the remaining hyperparameter choices.

Table 2: Fair-PG-Rank hyperparameter choices

E B l 2 MC

Synthetic 5 1 0 10
German 100 1 0 25
Microsoft 68K 10 .01 32

16


	Introduction
	Related work

	Problem formulation
	Fair Ranking via Invariance Regularization

	Algorithm
	Theoretical Results
	Computational results
	Synthetic
	German Credit data set
	Microsoft Learning To Rank data set

	Conclusion
	Proofs of Theoretical Results

